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Abstract. The combination of experts is an effective technique when the indi-
vidual classifiers that are merged are precise and diverse. This paper presents an 
application of multiclassifiers in a real problem to predict the land aptitude of 
sugarcane areas. There are different combination strategies and multiclassifiers 
methods. We used Bagging and Boosting as ensemble methods with only one 
learning technique to achieve the classification process. Later, a hybrid method 
such as Stacking was used. These three multiclassifier methods yielded better 
results than the simple classifiers. Decision trees, nearest neighbor and Naive 
Bayes learning were the learning techniques applied.  

1 Introduction 

This paper presents a study about multiclassifiers, which currently have a wide apo-
gee in the scientific environment, in contrast to the traditional classification tech-
niques. Multiclassifiers take into account all valid hypotheses (one hypothesis per 
learner is combined). It means none of the consistent hypotheses is discarded; there-
fore the combination of the set predictions is carried out. The use of multiclassifiers 
has increased as a result of the overfitting problems they can solve, which makes 
possible to obtain better results with few training data. Moreover, they are able to 
decompose a complex problem in multiple sub-problems easier to understand, and 
additionally, they eliminate the not correlated errors of the individual classifiers [14], 
[19]. 

Multiclassifiers consist of a combination of different classifiers. Their function is 
to fuse individual classifier predictions in order to get the combination of all the pre-
vious predictions as a final result.  

Multiclassifier methods may be heterogeneous. They can be divided into two main 
groups: one of them refers to the creation of a model from the combination of classi-
fiers that use the same learning technique; the second kind of methods named hybrids 
consists of a combination of classifiers but with different learning techniques. 

There are well known ensemble methods: Bagging [3], Boosting [8], Cross Vali-
dated Committees [17] (manipulate training examples); Random Subspace Method 
(manipulates input features) [12]; Error Correcting Output Coding (manipulates out-
put targets) [7] and Randomization (injects randomness) [5]. 



Bagging, Boosting and Random Subspace Method were evaluated in [6] conclud-
ing that Boosting was the most precise among the three methods in problems without 
noise. The obtained results in [2] showed that Bagging was the best method in prob-
lems with noise, and Boosting presented the worst behavior. 

Stacking [24] and Cascading [9] are hybrid methods used in many researches. 
Both methods differ in their architecture, their goals, and the internal use of cross 
validation, among others. In terms of architecture, Stacking has a parallel one, while 
Cascading shows a sequential architecture. On the other hand, the ultimate goal of 
Stacking is combining predictions; the goal of Cascading is to obtain a model that can 
use terms in the representation language of lower level classifiers. According to the 
third characteristic, Cascading does not use internal cross validation in contrast to 
Stacking that uses cross validation to generate a training set for learning the meta-
level classifier. 

There are different combination strategies to merge the output of individual classi-
fiers. The abstract-level methods such as the majority vote [2], weight majority vote 
[15], behavior-knowledge space [13], and belief functions [25] represent one of these 
types of combination. Secondly, there are rank-level methods, as Borda count method 
[5] and weighted Borda count [22]. Another combination strategy is the measurement 
level fusion, which includes, for example: the simple average, the product, the maxi-
mum, the minimum, other statistic operators and weighted average [11]. 

Abstract-level methods can be applied to any ensemble of classifiers. However, 
the trained rules impose heavy demands on the quality and size of data set. Rank-level 
methods are suitable in problems with many classes. They can also be applied to soft 
outputs to avoid lack of consistency when using different classifiers and to simplify 
the combiner design; regarding they are not supported by theoretical underpinning 
and their results depend on the scale of numbers assigned to the choices. Finally, 
measurement level fusion, combines rules that can exploit a higher amount of infor-
mation with respect to other results. In addition, complex combiners can be designed 
to exhibit classifiers with different performance and complex correlations. A normali-
zation of the classifier soft outputs is required when different classifiers are being 
used. This is seen as a disadvantage as well as it is the use of large and very good 
quality datasets [18].  

The classifier combination shows higher precision than any individual classifier in 
the set. This condition will be reached only if the individual classifiers are precise and 
diverse. That is, a classifier is considered precise when its error is lower than 0.5. 
Two or more individual classifiers are diverse when their output errors are not corre-
lated. 

The area of machine learning algorithms that deal with multi-agent systems is 
known as ensemble learning. Ensemble learning is based on the idea of having a set 
of weak learners (they can also be denoted as agents), which build together a strong 
learner through agreement mechanisms [10]. 

An ensemble of agents solves problems in the following way: each individual 
agent works out a part of the problem and makes its own prediction, and then, all 
those predictions are merged into a global decision [16]. Applications of multi-agents 
as multiclassifiers have been explored in [1], [21]. 

The objective of this paper is to use land evaluation data from sugarcane areas to 
predict the aptitude of each agricultural field by different individual classifiers and 



multiclassifiers. Moreover, we want to demonstrate that the precision is increased 
with the use of a classifier fusion.  

This paper is organized as follows: data analysis is given in section 2, evaluation 
and results from the use of different multiclassifiers are described in section 3. Fi-
nally, we summarize our application in section 4. 

2 Data Analysis 

During the development of this study the steps of the data mining process were fol-
lowed as [4]. The objective is to apply data mining techniques by classifiers in data 
from the land physical aptitude categories dedicated to sugarcane in Cuba. These 
techniques will allow predicting the land aptitude categories from soil variables, cli-
mate and agricultural factors. Once precise individual classifiers are built, it will be 
proven how the use of multiclassifiers increases the precision.   

The data source of this study is the National Sugarcane Research Institute of 
Cuba. The database has 1000 registers that correspond to sugarcane crops and twelve 
variables (soil slope, stones, rocks, salinity, soil pH, cation exchange capacity, drain-
age, compaction, rains, soil effective depth, agricultural yield cluster and land aptitude 
category). There are two numerical attributes and ten nominal attributes.  The attrib-
ute value that will be predicted in this paper is represented in the label “eval”, belong-
ing to the land physical aptitude for sugarcane areas.   

The Mineset software [20] was used in order to assure the analysis of data quality 
during pre-processing step. This tool was selected because its visualization capacity is 
more detailed and more illustrative than WEKA (Waikato Environment for Knowl-
edge Analysis) 3.4 from University of Waikato [23]. WEKA was also used to execute 
algorithms because its variety of learning techniques and algorithms is larger than 
Mineset. 

In Mineset, the option Statistics Viewer was used to visualize if there are variables 
with values significantly distant of the set. The visualization of the value distribution 
was obtained by histograms, in the case of the nominal attributes, and boxplots for the 
numerical attributes (Fig. 1). The graphics show that the variables do not present 
outliers.    

Only in the case of the numerical variable “prfu” corresponding to the soil effec-
tive depth, the mean value of this variable is distant of the maximum value. From a 
total value of 1000, 78 of them are abnormally high; although, it is necessary to men-
tion, this is not caused by human errors. The soils dedicated to sugarcane crops in 
Cuba usually, are not very deep, but there are some areas where it is possible to find 
high values of soil effective depth (very deep) and others with very small ones. All 
the attribute values belong to the established real data for the areas that integrate the 
data domain. It means that registration errors have not been made. In spite of attrib-
utes such as “ph”, “cic”, “sali” and “agrup” are not equally distributed among the 
different categories, it does not indicate that the categories with a few number of 
values are mistakes.    

A pie chart (Fig. 2) was made to observe the behavior of the variable “eval”, 
which is the label of this problem. As it can be seen in the chart, land aptitude data are 



well distributed among the four possible categories. This variable is represented by 
the values “A1” for the extremely suitable areas; “A2” for those moderately suitable, 
“A3” for marginally suitable and “N” corresponding to those not suitable for sugar-
cane.    

 

Fig. 1. Statistical behavior of variables by Mineset. 

According to the results of the statistical analyses made to the data set, it is possi-
ble to affirm the data have high quality and they are not erroneous. That is, the data 
are reliable, there are not missed data and they follow an expected behavior. Data set 
has been delivered and validated by a distinguished specializing entity in Cuba. In 
general, this means the data do not have noise.    

Several individual classification algorithms were tested using the tool WEKA to 
select those that present high precision in the prediction of the land physical aptitude 
category. Later on, multiclassifiers are created. Then, the precision increment with the 
use of multiclassifiers can be checked, in relation to the results using individual clas-
sifiers.   

 
 
 
 



 

 

 

  
 
 
    
 
Fig. 2. Pie chart of the label “eval”. 

3   Evaluation and Results 

Three simple methods were used: decision trees, Naive Bayes and learning based on 
the nearest neighbor. In all the experiments, the 10-fold cross-validation was used as 
test mode 15 times modifying the random number seed to be used. Table 1 shows the 
average precision and computational cost values of the three mentioned methods.  

Table 1. Average precision (%) and time execution (sec.) values for three simple learning 
methods. 

Algorithm Precision Time execution 
Decision tree 90.17 2 
Nearest neighbor 83.24 5 
Naive Bayes 70.07 1 

 
The results indicate that the best method for this dataset is the decision tree, fol-

lowed by the nearest neighbor learning and, in third place, the Naive Bayes. Although 
Naive Bayes has less computational cost than decision tree, only a difference of one 
second, but the last one reaches an average error of 9.83 % while NaiveBayes has an 
average error value of 29.93 %. Nearest neighbor was the slowest among the three 
classifiers in the execution. Next, multiclassifiers were built using the same learning 
techniques: Bagging and Adaboost (Boosting) with the decision trees (it is the induc-
tor with the highest individual precision obtained). In this manner we demonstrate the 
precision is increased in relation to the use of this learning technique in an individual 
way.  

Table 2 illustrates the precision values obtained by the two multiclassifiers with 
decision trees. Both methods allow increasing the precision. Boosting was better than 
Bagging for this study according the precision achieved. Boosting using decision trees 

 



registers the lowest average error value (6.50 %) but it is 6 times slower than the 
simple decision tree algorithm. In spite of multiclassifiers improve the precision they 
intensify the computational cost. 

Table 2. Average precision (%) and time execution (sec.) values with decision trees for the 
individual classifier, Bagging and Boosting. 

Algorithm Precision Time execution 
Decision tree 90.17 2 
Bagging 91.49 9 
Boosting 93.50 12 
 
Fig. 3 describes the precision behavior in relation to the number of iterations for 

Bagging and Boosting, using decision trees. The precision raise in both multiclassifi-
ers is not constant according to the number of iterations. The highest variation occurs 
between 0 and 20 iterations and the highest values are reached with 40.   

With the development of this study the results obtained confirmed the ones 
achieved in [25], because with this data set without noise, Boosting reaches a better 
precision than Bagging using decision trees. 

When implementing Bagging and Boosting with the Naive Bayes algorithm, 
which is the learning technique that produced the worst precision in the individual 
way, the results were similar. Boosting surpassed Bagging (71.30 % and 71.00 %, 
respectively).   
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Fig. 3. Precision obtained with Bagging and Boosting with decision trees in relation to the 
number of iterations. 

WEKA provides Stacking as a hybrid method. In the implementation of this 
method, the three initial algorithms (decision trees, Naive Bayes and learning based 
on the nearest neighbor) were the learning techniques used as base classifiers to build 
the model. Naive Bayes was also selected to learn the meta-model. The results reflect 



Stacking increments the precision in comparison to the classifiers individually, but it 
was the slowest among the experiments made, see Table 3. 

Table 3. Average precision (%) and time execution (sec.) values for three simple learning 
methods and Stacking. 

Algorithm Precision Time execution 
Decision tree 90.17 2 
Nearest neighbor 83.24 5 
Naive Bayes 70.07 1 
Stacking 90.47 42 
 
One of the National Sugarcane Research Institute of Cuba goals is the develop-

ment of a Sugarcane Spatial Decision Support System (SSDSS). It will include the 
use of different classification techniques in data mining by multiclassifiers. The judg-
ments (predictions) of human experts can be combined, and then it will take part of 
the system. This study constitutes an initial exercise that can be improved in order to 
incorporate classification models to the SSDSS.  

The introduction of computer-advanced technologies will allow the integration of 
the sugarcane scientific advances to provide solutions to production problems. There-
fore, it will permit that better results be reached in different research divisions as 
agronomical management, genetic and breeding improvement, sanitary control and 
agricultural services (fertilizers, varieties, pests and diseases, weeds, and others). All 
these elements can be joined in order to reinforce the current computer systems in-
stalled at National Sugarcane Research Institute of Cuba. Their integration based on 
multiclassifiers can fuse the knowledge of human experts (in the case of Cuba they 
are very specific and extensive). Making decision process can consider all criteria 
about sugarcane crops. 

4   Conclusions 

The appropriate combination of two or more classifiers can provide a more robust, 
reliable and efficient prediction than the individual use of classifiers. The combination 
can be implemented by means of intelligent agents representing weak learners, which 
together build a strong learner through agreement mechanisms. 

There are differences in the combination forms and the final results of the multi-
classifiers depending on the algorithms and the learning techniques used. The applica-
tion of multiple classifiers introduces diverse classification approaches that offer 
higher flexibility in the final decision.    

The hypothesis combination in multiclassifiers is an example of the most general 
and fundamental problem in the information integration from multiple sources. The 
main implication in the multiclassifiers is, in general, that they augment the precision 
in comparison with a single classifier. In addition, they reduce the over fitting, avoid-
ing the selection of an extensive model.   

The nature of the learning algorithms influences the classification precision with 
the same data set. Three different learning techniques were used in this research; the 



individual classifiers were precise and diverse. Ensemble methods improved the pre-
cision value obtained by individual classifiers.   

Boosting obtained better results than Bagging by using a dataset without noise.    
A hybrid method (Stacking) was used. This method merged three different learn-

ing techniques and increased the precision value. 
The use of multiclassifiers must be justified with a very significant precision gain 

in relation to the individual classifiers, due to; in general, the multiclassifiers take 
more time in their execution. 

This experimental study allows a first exercise that can be included in the devel-
opment of classification models using multiclassifiers for a Sugarcane Spatial Deci-
sion Support System. 
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